The name mica was probably created from the Latin word micare meaning to shine in reference to the shiny luster of the micas. Muscovite is very resistant to heat and electricity. As a result, it was commonly called "Muscovy." This mineral was commonly called Muscovy Glass after the Latin term vitrum Muscoviticum. In 1850, James Dwight Dana formally named this mineral muscovite based on the Latin term.
The name phlogopite, named by F.A. Breithaupt in 1841, comes from the Greek word phologopos meaning fiery in reference to the reddish color seen on some specimens of this mica. Mica is a mineral name given to a group of minerals that are similar in their physical properties and chemical compositions. They are all silicate minerals, which means that chemically they all contain silica (SiO4). Mineralogists call micas sheet silicates because their molecules combine to form distinct layers. These layers can be seen in muscovite mica specimens because it can be split (mineralogists call this feature cleavage) into very thin, flexible, transparent layers. This physical property is so distinctive that all minerals that cleave in this fashion are said to have micaceous cleavage.
There are 37 different mica minerals. In addition to the silicate tetrahedrons in all micas, purple micaceous cleavage. contains the elements potassium, lithium, and aluminum. Black biotite contains potassium, iron, and magnesium. The two micas used as a commodity are: brown mica or phlogopite which contains iron and magnesium; and the "reddish, green, or white (or clear) mica" or muscovite which contains potassium and aluminum.
The principal use of ground mica is in gypsum wallboard joint compound, where it acts as filler and extender, provides a smoother consistency, improves workability, and prevents cracking. In the paint industry, ground mica is used as a pigment extender that also facilitates suspension due to its light weight and platy morphology. The ground mica also reduces checking and chalking, prevents shrinkage and shearing of the paint film, provides increased resistance to water penetration and weathering, and brightens the tone of colored pigments. Ground mica also is used in the well-drilling industry as an additive to drilling “muds.”
Coarsely ground mica flakes help prevent lost circulation by sealing porous sections of the uncased drill hole. The plastic industry used ground mica as an extender and filler and also as a reinforcing agent. The rubber industry uses ground mica as an inert filler and as a mold lubricant in the manufacture of molded rubber products, including tires.
Sheet mica is used principally in the electronic and electrical industries. The major uses of sheet and block mica are as electrical insulators in electronic equipment, thermal insulation, gauge “glass”, windows in stove and kerosene heaters, dielectrics in capacitors, decorative panels in lamps and windows, insulation in electric motors and generator armatures, field coil insulation, and magnet and commutator core insulation. Mica is also used as segment plates between copper commutator sections to insulate copper from the steel; phlogopite mica is used because it wears at the same rate as the copper segments.